欢迎光临
新能源行业新闻站

【人工智能】智能计算概述、神经网络计算、机器学习计算、遗传算法、模糊计算、群智能计算

智能计算概述

智能计算(Intellectual Computing,IC),也称计算智能(Computational Intelligence,CI)或软计算(Soft Computing,SC),是受人类组织、生物界及其功能和有关学科内部规律的启迪,根据其原理模仿设计出来的求解问题的一类算法。智能计算所含算法的范围很广,主要包括神经网络、机器学习、遗传算法、模糊计算、蚁群算法、人工鱼群算法、粒子群算法、免疫算法、禁忌搜索、进化算法、启发式算法、模拟退火算法、混合智能算法等类型繁多、各具特色的算法。以上这些智能计算的算法都有一个共同的特点就是通过模仿人类智能或生物智能的某一个或某一些方面而达到模拟人类智能、实现将生物智慧、自然界的规律等设计出最优算法,进行计算机程序化,用于解决很广泛的一些实际问题。当然,智能计算的这些不同研究领域和算法各有各的特点,虽然它们具有模仿人类和生物智能的共同点,但是在具体实现方法上还存在一些不同点。例如人工神经网络模仿人脑的生理构造和信息处理的过程,模拟人类的智慧;模糊计算模仿人类语言和思维中的模糊性概念,也是模拟人类的智慧;进化计算模仿生物进化过程和群体智能过程,模拟大自然的智慧等。

【人工智能】智能计算概述、神经网络计算、机器学习计算、遗传算法、模糊计算、群智能计算

智能计算(摘自互联网)

智能计算,借鉴仿生学的思想,基于生物体系的生物进化、细胞免疫、神经细胞网络等诸多机制,用数学语言抽象描述的计算方法,是基于数值计算和结构演化的智能,是智能理论发展的高级阶段。智能计算有着传统计算无法比拟的优越性,它的最大特点就是不需要对问题自身建立精确的数学模型,非常适合于解决那些因为难以建立有效的形式化模型而用传统的数值计算方法难以有效解决、甚至无法解决的问题。

随着计算机系统智能性的不断增强,由计算机自动和委托完成任务的复杂性和难度也在不断增加。所以,智能计算也可以看作是一种经验化的计算机思考性的算法,是人工智能体系的一个分支,是辅助人类去处理各式问题的具有独立思考能力的系统。

智能计算是借助自然界、特别是生物界规律的启示,根据其规律,设计出求解问题的算法。数学、物理学、化学、生物学、心理学、生理学、神经科学和计算机科学等诸多学科的现象与规律都可能成为智能计算算法的基础和思想来源。从相互关系上来看,智能计算属于人工智能的一个分支。现在,智能计算的发展也面临严峻的挑战,其中一个重要原因就是智能计算目前还缺乏坚实的数学理论基础,还不能像物理、化学、天文等学科那样非常自如地运用数学工具解决各自的计算问题。虽然神经网络具有比较完善的理论基础,但是像进化计算等一些重要的智能算法还没有完善的数学基础;智能计算算法的稳定性和收敛性的分析与证明还处于研究的开始阶段。通过数值实验方法和具体应用手段检验智能计算算法的有效性和高效性是研究智能计算算法的重要方法。从其本质上来看,智能计算是仿生的、随机化的、经验性的,大自然也是随机性的、具有经验性的,抽取大自然的这一特性,自动调节形成经验、取得可用的结果。这些方法还具有以下共同的要素:自适应的结构、随机产生的或指定的初始状态、适应度的评测函数、修改结构的操作、系统状态存储结构、终止计算的条件、指示结果的方法、控制过程的参数等等。计算智能的这些方法具有自学习、自组织、自适应的特征和简单、通用、健壮性强、适于并行处理等优点。在并行搜索、联想记忆、模式识别、知识自动获取等方面得到了广泛的应用,取得了诸多开创性的成果。

这里所说的“软计算”是相对于“硬计算”而言的。所谓“硬计算”是指传统的数值计算,具有可用的完善数学模型,坚实的数学理论基础,主要特征是严格、确定和精准。但是硬计算并不适合处理现实生活中的许多问题,如汽车驾驶、人脸识别、信息检索等,软计算通过对不确定、不精确及不完全取值的容错以取得低代价的解决方案和稳定性,模拟自然界中智能系统的生化过程(人的感知、脑结构、生物进化和免疫等)来有效的处理日常工作、科研和生产中遇到的诸多问题。当然,软、硬计算的说法只是相对而言的,很难进行严格的定义和区分。

智能计算跟数值计算的目的是一样的,即通过计算得到令人满意的接近真解的近似解,再拿这个近似解代替真解来说明和解决问题。一般情况下,很多问题是没有解析解的,这时可以通过数学建模、用计算方法来求数值解;当遇到问题特别复杂,用传统计算方法计算量太大或很难在计算机上实现时,可以考虑采用智能算法。

计算智能是受大自然智慧和人类智慧的启发而设计出的一类算法的统称,随着技术的进步,在科学研究和工程实践中遇到的问题变得越来越复杂,采用传统的计算方法来解决这些问题面临着计算复杂度高、计算时间长等问题,特别是对于一类高难度问题,传统算法根本无法在可以接受的时间内求出精确解。因此,为了在求解时间和求解精度上取得平衡,提出了很多具有启发性特征的智能算法。这些算法或模仿生物界的进化过程,或模仿生物的生理构造和身体机能,或模仿动物的群体行为,或模仿人类的思维、语言和记忆过程的特性,或模仿自然界的物理现象,希望通过模拟大自然和人类的智慧实现对问题的优化求解,在可接受的时间内求解出可以接受的解。这些算法共同组成了计算智能算法。

智能计算和不少学科之间有着密切的关系,如智能计算和人工智能、最优化算法及统计计算等。

【人工智能】智能计算概述、神经网络计算、机器学习计算、遗传算法、模糊计算、群智能计算

人工智能(Artificial Intelligence,AI),是研究、开发用于模拟、延伸和扩展人类的智能的理论、方法、技术及应用系统的一门技术科学,是计算机科学的一个分支,它企图了解智能的实质,以得出一种新的能以人类智能相似的方式做出反应的智能性机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作,但智能计算和人工智能是两个完全不同的概念,计算和通信两个领域的融合开创了智能计算的新天地,现在计算机已经可以更聪明地帮助人们获得和处理信息,这已经和人工智能的概念大相径庭了。从相互关系上看,计算智能应属于人工智能的一个分支。

未经允许不得转载:新能源行业资讯 » 【人工智能】智能计算概述、神经网络计算、机器学习计算、遗传算法、模糊计算、群智能计算

分享到:更多 ()

评论 抢沙发

评论前必须登录!